

Cool Cyber Games

Gamified Cyber Security Learning Platform

--

Team members

Anthony Clayton - aclayton2023@my.fit.edu

Matthew Goembel - mgoembel1@gmail.com

Ben Allerton - ballerton2020@my.fit.edu

Ludendorf Brice - lbrice2018@my.fit.edu

Faculty advisor

Dr. Sneha Sudhakaran - ssudhakaran@fit.edu

Client

Dr. Sneha Sudhakaran - Florida Institute of Technology

Meeting(s) with the Client for developing this Plan

*Meetings take place weekly on Wednesdays with the entire team

1.​ 08/27/2025 - Discussed project plan, goals for this semester, and how we plan to finish.

Project Goals

Provide an interactive and effective platform to teach cybersecurity to adult users (18+). Build
user awareness, practical skills, and resilience against cyber threats. Allow compatibility with all
the most commonly used operating systems and languages. Offer hands-on experience with
simulations of real-world scenarios to build real-world technical skills.

Project Motivation

Lack of Accessibility and Usability: Existing cybersecurity learning platforms often use overly
technical language, intimidating interfaces, or require prior knowledge, discouraging especially
inexperienced audiences from engaging in cybersecurity education.

Absence of Gamification and Fun: Cybersecurity is often presented in a dry, textbook-like
manner. Without gamification and interactivity, users struggle to stay motivated, and learning

mailto:aclayton2023@my.fit.edu
mailto:mgoembel1@gmail.com
mailto:ballerton2020@my.fit.edu
mailto:lbrice2018@my.fit.edu
mailto:ssudhakaran@fit.edu

outcomes are limited.

Fear and Intimidation Around Cybersecurity Concepts: Many users find complex
cybersecurity concepts abstract and intimidating. Instead of avoiding the topic entirely, a guided
approach can help users feel confident and capable.

Lack of hands-on opportunities: Without practical exposure, users cannot effectively apply
cybersecurity principles in real-life scenarios.

Approach (key features of the system):

Interactive tutorials and quizzes: Users can engage with interactive tutorials that guide them
through essential cybersecurity concepts in a step-by-step manner. The users can then apply their
knowledge through quizzes at the end of each tutorial, which test their understanding using
multiple-choice, drag-and-drop, and scenario-based questions. This feature helps users actively
participate in the learning process and strengthens their ability to retain the material.

Skill-specific modules with gamification: The users can access modules with games tailored to
their desired skill to learn. Users can interact with gamified elements, such as simulated
cybersecurity challenges. This gamification enhances the user experience and keeps users
engaged while helping them master cybersecurity skills.

Real-world cybersecurity challenges: Users can learn by playing in real-world cybersecurity
simulations, where they simulate defending against cyberattacks like phishing, malware, and
social engineering. The users can practice applying cybersecurity strategies in scenarios that
mirror real-life situations, helping them develop practical, hands-on skills. Additionally, users
can potentially analyze case studies of cyber incidents, gaining insights into how cybersecurity
threats evolve and how to protect against them.

Progress tracking and certifications: The users can track their learning progress by monitoring
their completion of tutorials and quizzes. Users can earn badges, achievements, and certifications
as they progress through different levels of content, completing specific milestones or advanced
courses, providing them with a tangible way to measure their learning success and motivation to
continue improving their cybersecurity knowledge.

Algorithms and tools (libraries/api/frameworks/languages) for the key
features

Game Development: Unity, Godot

Front-End: HTML, CSS, JavaScript, React.js.

Back-End: Python, Node.js, Java, Typescript

Database & Storage: PostgreSQL, MySQL, MongoDB.

Hosting & Deployment: GitHub Pages, ExpressJS, Render.

Testing & Debugging: Selenium, JUnit, Mockito

Authentication: OAuth 2.0, JWT (JSON Web Tokens)

Collaboration & Organization: GitHub (version control), Jira (task management), Discord,
Text Message, Email (communication), weekly meetings(in-person).

Novel features: Discuss which features/functionalities are novel and why.

Gamify Cyber Security Content: While users could learn about cyber security concepts
through YouTube videos or articles, gamifying that experience could potentially be a better
learning style as some users may find it less intimidating and more hands-on.

Progress Tracking and Certifications: Many platforms offer courses, but progress tracking and
certifications that reflect user achievements in a gamified and interactive environment are less
common. Tracking progress across different skill levels and offering certificates upon completion
creates motivation and gives users something tangible to show for their efforts.

Adaptive Learning Paths: Based on a learner's progress and performance, the platform could
automatically adjust difficulty levels or give personalized learning suggestions, ensuring the
content is always appropriately challenging.

Technical Challenges

Defining the Structure of Real-World Cybersecurity Simulations: Designing realistic yet
engaging scenarios for threats like phishing and malware is challenging, especially in balancing
complexity for diverse audiences. We must identify the best tools and frameworks and the
methods for maintaining simplicity and efficiency.

Implementing Secure Authentication and Authorization: Designing a secure and
user-friendly authentication system that handles third-party login providers (e.g., Google).

Designing Effective Cybersecurity Education Content: Developing interactive, engaging, and
skill-specific lessons involves technical challenges such as integrating dynamic educational
content into gamified systems and ensuring compatibility with various devices and operating
systems. Additionally, implementing tools to track user comprehension and progression across
diverse topics poses technical hurdles.

Design: system architecture diagram

Components/modules

 Context (Level-1)

Deployment + Hardware interface

Evaluation:

To evaluate the effectiveness of Cool Cyber Games using both technical metrics and learning
outcomes, we could measure:

1.​ System Functionality & Performance​

a.​ Page load time for website and games ≤ 3 seconds.​

b.​ Backend API response times (p95 latency < 300ms).​

c.​ No critical errors or crashes during playtesting.​

2.​ Usability​

a.​ Users can navigate the dashboard, play a game, and view achievements without
external guidance.​

b.​ Target ≥ 80% of testers successfully complete a game module in their first
session.​

3.​ Learning Outcomes​

a.​ Pre-/post-quiz improvement: average score increases by ≥ 25% after completing a

module.​

b.​ Completion rate of modules ≥ 70% of testers finish at least one full game.​

4.​ Engagement​

a.​ Retention: at least 40% of testers return for a second session.​

b.​ Feedback survey: average user satisfaction ≥ 4 out of 5 (ease of use, fun, learning
value).​

5.​ Security​

a.​ Authentication works consistently with Google login (OAuth 2.0).​

b.​ All API calls between front- and back-end are protected by secure tokens.

Progress Summary:
Module/feature Completion % To do

Website & GUI 50% -Allowing drop-down menus, mouse-over help
messages
-User Dashboard
-Leaderboard
-Account Management
-Prettify

Games 50% -Finish game 2
-Finish game 3
-Finish game 4

Backend 90% -Test delivery speed, game speed, asset loading etc.

Auth/Security 90% -Ensure API calls between front and backend are
secure

Database 90% -Store user-specific game data in the DB
-Test flown between games, front-end, and DB

User Feedback 75% -Collect more feedback
-Add in-game feedback

Milestone 4 (Sep 29): itemized tasks:

1.​ Implement, test, and demo three mini-games (Master the Password, File
Detective, Web Quest).

2.​ Connect Malware Maze to backend → frontend (progress tracking and
achievements).

3.​ Build and demo User Dashboard + Leaderboard (fetches from DB).

Milestone 5 (Oct 27): itemized tasks:

4.​ Finish Game 2, Game 3, and Game 4 final versions with art/UI polish and
backend integration.

5.​ Refine User Dashboard with visual improvements (progress bars, badges).
6.​ Conduct evaluation study with testers:

■​ Collect learning outcome data (pre/post quiz scores, completion rates).
■​ Collect usability feedback (navigation, clarity, enjoyment).

7.​ Begin poster design for Senior Design Showcase.
8.​ Midpoint client demo: show functional website with multiple games, working

dashboard, and first evaluation results.

Milestone 6 (Nov 24): itemized tasks:

9.​ Implement and test full system integration (all games, dashboard, backend, DB,
auth).

10.​Conduct final end-to-end testing and demos
11.​Run final evaluation: analyze technical metrics (load times, errors) + user learning

outcomes.
12.​Create User Manual (how to play, navigate, track progress) and Developer

Manual (setup, architecture, future work).
13.​Record and edit a demo video highlighting system features.
14.​Finalize and print poster for Senior Design Showcase.
15.​Final presentation to client and faculty advisor.

Task matrix for Milestone 4 (teams with more than one person)
Task Anthony Matthew Ben Ludendorf

Implement, test & demo
Game: Master the Password

100% 0% 0% 0%

Implement, test & demo
Game: File Detective

0% 0% 0% 100%

Implement, test & demo
Game: Web Quest

0% 0% 100% 0%

Implement & test
Backend→Frontend
Game connection for
Malware Maze

0% 100% 0% 0%

Implement, test & demo
Frontend user dashboard and
leaderboard

0% 100% 0% 0%

Task 1: Implement, test, and demo Game: Master the Password​
Anthony will finalize the gameplay mechanics, polish the UI.. The demo will show users logging in,
playing the game, and receiving achievements.

Task 2: Implement, test, and demo Game: File Detective​
Ludendorf will build out the puzzle flow and challenge mechanics. This task includes debugging asset
loading, connecting it to backend progress tracking, and preparing a working demo of at least one
playable scenario.

Task 3: Implement, test, and demo Game: Web Quest​
Ben will complete front-end integration and ensure quiz-style challenges work within the game. The
deliverable is a functional Web Quest level that tracks completion and updates user progress.

Task 4: Implement & test Backend→Frontend Game Connection for Malware Maze​
Matthew will connect the backend API to the front-end for Malware Maze. This includes storing progress
data in the database and retrieving it for the user dashboard. The task will demonstrate a full end-to-end
flow.

Task 5: Implement, test, and demo Frontend User Dashboard & Leaderboard​
Matthew will design and integrate the user dashboard, showing progress, achievements, and leaderboard
rankings. This will include API calls to fetch data from the backend and display it in a clean, user-friendly
interface.

