

Cool Cyber Games – Interactive Platform for Teaching Cybersecurity

Design Document

Matthew Goembel, Anthony Clayton, Ludendorf Brice, Ben Allerton​
Team Members

Sneha Sudhakaran​
Faculty Advisor

College of Science and Engineering​
Florida Institute of Technology​

Melbourne, United States

February 2025

Index

1.​ Introduction
○​ 1.1 Project Overview
○​ 1.2 Purpose
○​ 1.3 Scope

2.​ System Architecture
○​ 2.1 Overview
○​ 2.2 System Architecture Diagram

3.​ Module Design
○​ 3.1 User Interface (UI)

■​ 3.1.1 Homepage
■​ 3.1.2 Dashboard
■​ 3.1.3 Game Interface
■​ 3.1.4 Evaluations and Challenges
■​ 3.1.5 Leaderboard
■​ 3.1.6 Profile Page

○​ 3.2 User Interface (UI) Image
○​ 3.3 Backend API
○​ 3.4 Game Engine
○​ 3.5 Database Schema

■​ 3.5.1 Part of User DB
■​ 3.5.2 Part of Game DB

○​ 3.6 Network Communication
■​ 3.6.1 Authentication
■​ 3.6.2 Secure Communication
■​ 3.6.3 Real-Time Interactions

4.​ Algorithm Design
○​ 4.1 Example Pseudocode for API Test functionality

5.​ Additional Design Considerations
○​ 5.1 Security Measures
○​ 5.2 Deployment Strategy

6.​ Conclusion
7.​ Appendix

1. Introduction

1.1 Project Overview
Project Name: Cool Cyber Games – Interactive Platform for Teaching Cybersecurity​
Team Members: Matthew Goembel, Anthony Clayton, Ludendorf Brice, Ben Allerton​
Faculty Advisor: Sneha Sudhakaran​
Client: Sneha Sudhakaran, College of Engineering and Science

1.2 Purpose

Cool Cyber Games is designed to provide an engaging, interactive, and accessible
platform to educate users about cybersecurity. The system aims to improve
cybersecurity awareness, teach practical skills through hands-on experience, and make
learning accessible to global audiences through multilingual support.

1.3 Scope

The platform will include:
●​ Interactive tutorials and quizzes to teach cybersecurity concepts.
●​ Real-world cybersecurity challenges and gamification elements to enhance

engagement.
●​ Progress tracking and certification features to motivate users.
●​ A web-based application with cross-platform compatibility for desktop and

mobile devices.

2. System Architecture

2.1 Overview

The system follows a modular, service-oriented architecture consisting of the
following components:

1.​ Frontend Module: Implements user interfaces using HTML and Godot for game
elements.

2.​ Backend Module: Handles game logic, user authentication, progress tracking,
and real-time interactions using Node.js, Render, and Express.js.

3.​ Database Module: Stores user progress, scores, and game data using
MongoDB (separate databases for User DB and Game DB).

4.​ Game Engine: Implements the core game logic, cybersecurity challenges, and
scoring system using Godot.

5.​ Authentication Service: Manages user registration, login, and session
management with OAuth 2.0 (Google integration).

6.​ Progress Tracking Service: Logs user achievements, quiz results, and
certificates.

2.2 System Architecture Diagram

3. Module Design

3.1 User Interface (UI)

The UI will include the following screens:
1.​ Homepage: Features an overview of the platform, login/register options, and

access to tutorials and challenges.
2.​ Dashboard: Displays user progress, achievements, and recommended learning

paths.
3.​ Game Interface: Hosts interactive cybersecurity challenges with real-time

feedback.
4.​ Evaluations and Challenges: Scenario-based quizzes and interactive

challenges within the gamified module.
5.​ Leaderboard: Displays user rankings based on challenge completion and

scores.
6.​ Profile Page: Shows user details, settings, and logout option.

3.2 User Interface (UI) Image

3.3 Backend API

The backend will expose RESTful API endpoints to:
●​ Handle user authentication and sessions.
●​ Fetch and update game progress.
●​ Retrieve leaderboard data.
●​ Store and validate quiz responses.

3.4 Game Engine

The game engine will:
●​ Render 2D and 2.5D interactive game elements using Godot.
●​ Simulate real-world cybersecurity challenges.
●​ Manage game state, scoring, and level progression.

3.5 Database Schema

A Part of User DB:
1.​ Users Table: Stores user information (e.g., name, email, avatar) and

authentication details.
2.​ Sessions Table: Stores information about session details.
3.​ User Achievements Table: Stores information about achievements the user has

earned.
4.​ Game Progress table: Stores information about users' game progress.

A Part of the Game DB:
5.​ Games Table: Tracks user engagement and completion.
6.​ Leaderboard Table: Stores information about who's on the leaderboard.
7.​ Achievements Table: Stores information about all achievements.

3.6 Network Communication

The system follows a client-server model with secure API communication:

●​ Authentication: The system shall use Google OAuth 2.0 for user
authentication. Upon successful login, the system will receive an OAuth access
token from Google, which will be used to authenticate API requests.

●​ Secure Communication: All communication between the client and server shall
use HTTPS to ensure data encryption and prevent interception.

●​ Real-Time Interactions: WebSockets may be implemented for real-time
interactions in cybersecurity simulations, such as multiplayer challenges or live
leaderboard updates.

4. Algorithm Design

4.1 Example Pseudocode for API Test functionality

document.getElementById('testApiButton').addEventListener('click', async () => {​
 try {​
 const response = await fetch('/api/test', { credentials: 'include' });​
 ​
 // Log the response for debugging​
 const text = await response.text();​
 console.log('API Response:', text);​
 ​
 // Try to parse the response as JSON​
 const data = JSON.parse(text);​
 document.getElementById('api-result').textContent = JSON.stringify(data, null, 2);​
 } catch (error) {​
 console.error('API Test Error:', error);​
 document.getElementById('api-result').textContent = 'Error: ' + error.message;​
 }​
 });

5. Additional Design Considerations

5.1 Security Measures

●​ Ensure secure API communication using HTTPS.

●​ Follow OWASP security guidelines to prevent common vulnerabilities (e.g.,
SQL injection, XSS).

5.2 Deployment Strategy

●​ Host the application on Render for backend services and Godot for game
hosting.

●​ Use MongoDB Atlas for cloud-based database management.

6. Conclusion
Cool Cyber Games is designed to provide an innovative and engaging approach to
cybersecurity education. With its modular architecture, gamified challenges, real-world
simulations, and multilingual support, the platform ensures accessibility, scalability, and
security for a broad audience.

7. Appendix

This document is subject to change as development progresses. Future iterations will

include additional details on implementation, testing, and deployment strategies.

	
	1. Introduction
	1.1 Project Overview
	1.2 Purpose
	1.3 Scope

	2. System Architecture
	2.1 Overview
	2.2 System Architecture Diagram

	3. Module Design
	3.1 User Interface (UI)
	
	3.2 User Interface (UI) Image
	3.3 Backend API
	3.4 Game Engine
	3.5 Database Schema
	3.6 Network Communication

	4. Algorithm Design
	4.1 Example Pseudocode for API Test functionality

	5. Additional Design Considerations
	5.1 Security Measures
	5.2 Deployment Strategy

	6. Conclusion
	7. Appendix
	This document is subject to change as development progresses. Future iterations will include additional details on implementation, testing, and deployment strategies.

